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Polygenic background modifies penetrance of
monogenic variants for tier 1 genomic conditions
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Genetic variation can predispose to disease both through (i) monogenic risk variants that

disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves

many variants of small effect in different pathways. Few studies have explored the interplay

between monogenic and polygenic risk. Here, we study 80,928 individuals to examine

whether polygenic background can modify penetrance of disease in tier 1 genomic condi-

tions — familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch

syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in

disease risk based on polygenic background — the probability of disease by age 75 years

ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11%

to 80% for colon cancer. We propose that accounting for polygenic background is likely to

increase accuracy of risk estimation for individuals who inherit a monogenic risk variant.
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For a range of common heritable diseases, a small subset of
the population inherits a rare monogenic variant that causes
a large increase in disease risk by disrupting a specific

physiological pathway1. More recently, polygenic scores have
been developed that integrate the effects of many common
genetic variants on disease risk2–5. While the common variants
have small individual effects on disease risk, they can cumula-
tively have large effects—producing, in some individuals, risks
equivalent to the strong monogenic variants6,7. A key question is
how monogenic and polygenic risk interact: can disease risk from
a monogenic variant that causes major disruption to a specific
pathway be meaningfully modified by polygenic risk factors that
involve small perturbations to a wide range of cellular pathways?

Recent work has suggested that common variant background
modifies the age of disease onset among carriers of high-risk
trinucleotide repeats predisposing to Huntington’s disease, the
p.Gln368Ter MYOC variant predisposing to glaucoma, and con-
tinuous measures, such as height, body mass index, and cholesterol
levels among those with rare monogenic mutations6,8–10. With
respect to common diseases such as cancer, the Consortium of
Investigators of Modifiers of BRCA1/2 (CIMBA) studied a large
number of BRCA1/2 monogenic risk variant carriers recruited from
cancer genetics clinics, noting a relationship between a polygenic
score comprised of genome-wide significant loci and the risk of
breast, ovarian, and prostate cancer11,12.

Here, we set out to confirm and extend these prior observa-
tions for the three tier 1 genomic conditions highlighted by the
U.S. Centers for Disease Control and Prevention—familial
hypercholesterolemia, hereditary breast and ovarian cancer, and
Lynch syndrome13. About 1% of asymptomatic adults carry a
pathogenic or likely pathogenic variant related to any of these
conditions14,15. Although such variants are associated with
several-fold increased risk of disease, it has long been recognized
that they have incomplete penetrance and variable expressivity.
For example, in one U.S. healthcare system, more than 50% of
familial hypercholesterolemia variant carriers and more than
70% of female hereditary breast and ovarian cancer variant
carriers remained free of disease well into middle age16,17. We
hypothesized that this incomplete penetrance could be partly
explained by polygenic background—a topic that has both sci-
entific implications about disease physiology and clinical
implications for genetic counseling.

We designed two case-control studies from the UK Biobank
and Color Genomics commercial testing laboratory and per-
formed analysis of an independent cohort from the UK Biobank.
The two case-control studies increase statistical power by
enriching for disease cases, whereas the independent UK Biobank
cohort enables assessment of outcomes for both carrier and
noncarriers of monogenic risk variants within the context of
contemporary medical care18–20. Moreover, we compute newer
generation polygenic scores for coronary artery disease, breast
cancer, and colorectal cancer, which enhance risk prediction over
prior scores7,21,22.

Results
Coronary artery disease. We first studied the interplay of
monogenic risk variants and polygenic scores in coronary artery
disease. To identify individuals with monogenic variants causal
for familial hypercholesterolemia, we sequenced the three genes
related to the condition—LDLR, APOB, and PCSK9—in 6432
coronary artery disease cases and 6420 controls derived from the
UK Biobank (Table 1)18. Each of the observed genetic variants
was reviewed by a laboratory geneticist blinded to any phenotype
data and classified according to current clinical guidelines (Sup-
plementary Table 1)23. A total of 28 distinct genetic variants were

classified as pathogenic or likely pathogenic; they were present in
43 (0.67%) cases and 13 (0.20%) controls. The presence of a
familial hypercholesterolemia variant conferred a 3.21-fold
increased risk of coronary artery disease (95% confidence interval
[CI] 1.72–5.99) when assessed in a logistic regression model
adjusted for age, sex, and the first four principal components of
ancestry.

We next examined the effect of participants’ polygenic
background on risk of coronary artery disease, by computing a
previously validated polygenic score in all cases and controls7.

Even among carriers of a familial hypercholesterolemia variant,
the observed risk varied substantially according to the polygenic
score (Supplementary Tables 2 and 3). Odds ratio per standard
deviation increment in the polygenic score were 2.31 (1.16–4.57)
and 1.74 (1.68–1.81) for carriers and noncarriers, respectively.
Within the limitations of statistical power, we did not observe a
significant interaction between polygenic score and familial
hypercholesterolemia variant status (p-interaction 0.60, Wald
Test and Methods).

We classified individuals as having low polygenic score
(lowest quintile), intermediate polygenic score (middle three
quintiles), or high polygenic score (highest quintile). Compared
to non-carriers with intermediate polygenic score, the risk
among mutation carriers ranged from 1.30-fold (95% CI
0.39–4.32) for those in the lowest quintile of the polygenic
score distribution to 12.61 (95% CI 2.96–53.62) in the highest
quintile (Fig. 1a). To test the hypothesis that the risk gradient
among monogenic variant carriers according to the polygenic
score operated via pathways largely unrelated to the monogenic
variants, we conducted two additional sensitivity analyses. First,
we removed all variants from the polygenic score located within
1 megabase of the three familial hypercholesterolemia genes.
Second, we sought to remove the impact of the polygenic score
on LDL cholesterol by using the residuals from a linear
regression model that additionally included a previously derived
polygenic score for LDL cholesterol. In each case, effect
estimates were minimally changed (Supplementary Table 4
and Methods). These results suggest that the risk for coronary
artery disease captured by the polygenic score—among both
carriers and noncarriers of a monogenic variant—is largely
independent of LDL cholesterol pathways.

Table 1 Baseline characteristics of coronary artery disease
case-control study participants.

Cases with coronary
artery disease
(n= 6432)

Controls
(n= 6420)

Age, mean (SD), yr 68.3 (7.2) 68.3 (7.2)
Female sex, n (%) 2248 (34.9) 2234 (34.8)
Race, n (%)

White 5963 (92.7) 6188 (96.4)
Black 72 (1.1) 58 (0.9)
Asian 254 (3.9) 90 (1.4)
Other 143 (2.2) 84 (1.3)

Hypertension, n (%) 4565 (71.0) 2011 (31.3)
Diabetes, n (%) 1553 (24.1) 356 (5.5)
Chronic kidney disease,
n (%)

413 (6.4) 47 (0.7)

Current or former
smoking, n (%)

4256 (66.6) 2862 (44.7)

Body mass index, mean
(SD), kg m−2

29.60 (5.4) 27.26 (4.4)

Family history of heart
disease, n (%)

1986 (39.3) 1345 (26.6)
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We next examined an independent cohort of 48,812 unrelated
UK Biobank participants. A laboratory geneticist identified a
familial hypercholesterolemia variant in 130 (0.27%) of these
participants, 18 (0.87%) cases, and 112 (0.24%) controls, which
conferred a 5.08-fold (95% CI 3.01–8.57) increased risk of
coronary artery disease at the time of enrollment (Supplementary
Tables 5–7). The polygenic score for coronary artery disease was
normally distributed in the population and strongly associated
with disease—odds ratio per standard deviation increment
of 1.64 (95% CI 1.57–1.72). Within a logistic regression model,
the relationship between the polygenic score and prevalent
disease conformed to a linear model (Supplementary Fig. 1 and
Supplementary Table 8).

Joint modeling of monogenic variant carrier status and
polygenic score indicated substantial gradients in risk of coronary
artery disease according to inherited DNA variation that can be
assessed from the time of birth. Odds ratio for coronary artery
disease in monogenic variant carriers—as compared to non-
carriers with median polygenic score—ranged from 1.62 to 21.44
across percentiles of the polygenic score (Fig. 1b). Modeling the
probability of disease by age 75 years using a Cox regression
model suggested striking gradients in risk, ranging from 4.9% for
noncarriers in the lowest percentile of the polygenic score to

77.9% for monogenic risk variant carriers in the highest polygenic
score percentile (Fig. 1c).

Breast cancer. We next set out to apply the same analysis to
breast cancer. We first identified monogenic risk variants by
sequencing the BRCA1 and BRCA2 genes in 1920 breast cancer
cases and 17,344 controls, all female, from the Color Genomics
commercial testing laboratory (Table 2)20. A pathogenic or likely
pathogenic variant was identified in 174 (9.1%) cases and 671
(3.9%) controls, corresponding to a 3.48-fold (95% CI 2.81–4.21)
increased risk of breast cancer in variant carriers. We then cal-
culated polygenic risk for breast cancer, using a previously vali-
dated polygenic score21. As we saw for coronary artery disease,
breast cancer risk was strongly affected by polygenic background
even for those who carried a pathogenic variant (Supplementary
Tables 2 and 3). Within the limits of statistical power, the impact
of the polygenic score appeared similar in carriers and non-
carriers, odds ratio per standard deviation increment of 1.44
(1.19–1.74) and 1.57 (1.49–1.65), respectively, p-interaction=
0.94 (Wald Test and Methods).

Compared to noncarriers with intermediate polygenic score,
increased risk among carriers ranged from 2.40-fold (95% CI

Carrier 
Carrier 
Carrier 
Noncarrier 
Noncarrier 
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High 
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Low 
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Fig. 1 Interplay of monogenic and polygenic risk for coronary artery disease. a Risk of coronary artery disease by monogenic and polygenic risk strata
(case-control study; n= 12,852). Carriers and noncarriers were stratified into three groups according to their polygenic score—low, intermediate, or high
defined as the lowest quintile, the middle three quintiles, and the highest quintile of the polygenic score distribution, respectively. The odds ratio was
assessed in a logistic regression model with age, sex, and the first four principal components of ancestry as covariates. Noncarriers with intermediate
polygenic score served as the reference group. The black boxes indicate the adjusted odds ratio. The horizontal lines around the black boxes indicate the
95% confidence intervals. b Predicted odds ratio for coronary artery disease in each percentile (dots) of the polygenic score distribution for carriers (blue)
and noncarriers (black) of familial hypercholesterolemia variants in the cohort study derived from the UK Biobank (n= 48,812). Noncarriers with median
polygenic score served as the reference group. c Predicted probability of coronary artery disease by age 75 years in each percentile (dots) of the polygenic
score distribution for carriers (blue) and noncarriers (black) of familial hypercholesterolemia variants in the cohort study derived from the UK Biobank (n=
48,812). The shaded area around the dots represents the 95% confidence interval. The horizontal dashed lines show the probability of disease for people
with average polygenic risk score. FH familial hypercholesterolemia. p-values in the figure were estimated by the Wald Test. Statistical significance was set
at p < .05, and two-sided p values were used.
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1.58–3.65) for those in the lowest quintile of the polygenic score
distribution to 6.85-fold (95% CI 4.71–9.96) in the highest
quintile (Fig. 2a).

We again extended these results into the UK Biobank
participants, this time focusing only on the 26,597 female
participants (Supplementary Table 9). A laboratory geneticist

reviewed all observed genetic variants in the BRCA1 and BRCA2
genes (Supplementary Table 5), identifying 115 carriers of
pathogenic or likely pathogenic variants. These variants conferred
a 4.47-fold increased risk of breast cancer (95% CI 2.76–7.24).
The polygenic score was associated with an odds ratio per
standard deviation increment of 1.61 (95% CI 1.52–1.70), with a
linear relationship to the risk of breast cancer (Supplementary
Fig. 1 and Supplementary Table 8).

Joint modeling of both monogenic variant status and polygenic
score estimated that the risk for breast cancer among carriers of a
BRCA1 or BRCA2 variant ranges from 1.43-fold to 16.68-fold
increased risk across percentiles of the polygenic score (Fig. 2b).
When modeled as probability of disease by age 75 years, risk
among monogenic variant carriers ranged from 12.7% to 75.7%
and risk among noncarriers ranged from 3.3% to 29.6% (Fig. 2c).

Colorectal cancer. We studied a third disease, colorectal cancer,
in the same set of 48,812 UK Biobank participants used above
(Supplementary Tables 6 and 10). A pathogenic or likely patho-
genic Lynch syndrome variant in any of four genes (MLH1,
MSH2, MSH6, and PMS2) was identified in 76 (0.15%) indivi-
duals (Supplementary Table 5), conferring an odds ratio for
colorectal cancer of 27.86 (95% CI 14.35–54.10). The odds ratio

N of 1920 
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HBOC variant Polygenic score Controls Adjusted Odds Ratio 95% CI p-value 

Carrier High 48 125 6.85 (4.71; 9.96) 7.9 × 10–24 
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Noncarrier High 585 3095 1.99 (1.77; 2.24) 3.4 × 10–31

Noncarrier Intermediate 975 10,096 Reference 
Noncarrier Low 186 3482 0.54 (0.46; 0.64) 5 × 10–13
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Fig. 2 Interplay of monogenic and polygenic risk for breast cancer. a Risk of breast cancer by monogenic and polygenic strata (case-control study; n=
19,264). Carriers and noncarriers were stratified into three groups according to their polygenic score—low, intermediate, or high defined as the lowest
quintile, the middle three quintiles, and the highest quintile of the polygenic score distribution, respectively. The odds ratio was assessed in a logistic
regression model with age and the first four principal components of ancestry as covariates. Noncarriers with intermediate polygenic score served as the
reference group. The black boxes indicate the adjusted odds ratio. The horizontal lines around the black boxes indicate the 95% confidence intervals.
b Predicted odds ratio for breast cancer in each percentile (dots) of the polygenic score distribution for carriers (blue) and noncarriers (black) of hereditary
breast and ovarian cancer variants in the cohort study derived from the UK Biobank (n= 26,597). Noncarriers with median polygenic score served as the
reference group. c Predicted probability of coronary artery disease by age 75 years in each percentile (dots) of the polygenic score distribution for carriers
(blue) and noncarriers (black) of hereditary breast and ovarian cancer variants in the cohort study derived from the UK Biobank (n= 26,597). The shaded
area around the dots represents the 95% confidence interval. The horizontal dashed lines show the probability of disease for people with average polygenic
risk score. HBOC hereditary breast and ovarian cancer. p-values in the figure were estimated by the Wald Test. Statistical significance was set at p < .05,
and two-sided p values were used.

Table 2 Baseline characteristics of breast cancer case-
control study participants.

Cases with breast
cancer (n= 1920)

Controls
(n= 17,344)

Age, mean (SD), yr 57.4 (12.5) 45.9 (13.5)
Female sex, n (%) 1920 (100) 17,344 (100)
Race, n (%)
White 1375 (71.6) 12,365 (71.3)
Black 30 (1.5) 410 (2.4)
Asian 83 (4.3) 695 (4.0)
Other 432 (22.6) 3874 (22.3)
Body mass index,
mean (SD), kg m−2

26.5 (6.7) 27.2 (6.8)

Family history of
breast cancer, n (%)

855 (44.5) 7497 (43.2)
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per standard deviation increment in the colorectal cancer poly-
genic score was 1.65 (95% CI 1.48–1.85). Joint modeling of
monogenic variants and the polygenic score—using noncarriers
with median polygenic score as the reference group—noted odds
ratios ranging from 8.41 to 117.80 for carriers of monogenic
variants and 0.27 to 3.76 for noncarriers across polygenic score
percentiles (Fig. 3a). Estimated absolute risk of colorectal cancer
by age 75 years ranged from 11.3% to 79.7% for carriers and 0.7%
to 8.7% for noncarriers (Fig. 3b).

Discussion
Our analysis of the interplay between monogenic risk variants
and polygenic background—for the three CDC tier 1 genomic
conditions: familial hypercholesterolemia, hereditary breast and
ovarian cancer syndrome, and Lynch syndrome—has at least two
implications.

First, we showed that risk conferred by monogenic risk var-
iants, which act by perturbing a specific molecular pathway, can
be substantially modified by polygenic background, which
appears to act by affecting a diverse set of physiological processes.
Taking familial hypercholesterolemia as an example, monogenic
variants predispose to premature coronary artery disease through
dysregulation of clearance of LDL cholesterol from the circula-
tion. By contrast, only a small minority (~20%) of common DNA
variants that predispose to coronary artery disease operate via
cholesterol-related pathways, with the remainder affecting non-
cholesterol-related pathways (such as inflammation, cellular
proliferation, vascular tone) and many additional pathways yet to
be discovered24. Similarly, pathway analyses indicate that <20% of
common variants linked to breast or colorectal cancer affect genes
involved in the DNA repair pathways perturbed by the mono-
genic hereditary breast and ovarian cancer or Lynch syndrome
variants22,25. From a physiological standpoint, additional study is
needed to understand how the major disruptions caused by
monogenic variants can be offset by other factors. Yet, the risk for
monogenic variant carriers with the lowest polygenic risk scores
approached the population average. These results are largely
consistent with a liability threshold model, whereby the prob-
ability that any given pathogenic variant carrier crosses the

threshold into disease is influenced by the underlying liability
conferred by the polygenic background26. Understanding the
physiological basis of how polygenic score modifies the pene-
trance of monogenic variants may suggest therapeutic strategies
for monogenic variant carriers in general.

Second, our findings indicate that accounting for polygenic
background is likely to increase the accuracy of risk estimation for
individuals who inherit a monogenic risk variant. An important
example is the decision about the timing and intensity of lipid-
lowering therapy for individuals with familial hypercholester-
olemia. Here, we find a broad spectrum of risk of coronary artery
disease in those with a monogenic risk variant across percentiles
of the polygenic score that may better inform shared decision
making—odds ratios compared to noncarriers ranging from 1.62
to 21.44 and an absolute risk at age 75 years ranging from 17.5%
to 77.9%. Refined risk estimates may also help with counseling
and clinical decision making for hereditary cancer. In breast
cancer, carriers of pathogenic BRCA1 or BRCA2 variants are
faced with the decision about whether to undergo prophylactic
mastectomy as opposed to serial imaging27. At present, up to 50%
of women opt for prophylactic mastectomy, but rates are highly
variable28,29. For Lynch syndrome, the current guidelines
recommend initiating screening colonoscopy at age 20–25 years
and repeating every 1–2 years30. Aspirin has been shown to
reduce the risk of colon cancer in Lynch syndrome, but the
optimal dose and duration is unknown31. Many experts advocate
for prophylactic colectomy in a subset of patients, but this
remains controversial32. More accurate risk estimation could
better inform the onset and frequency of serial colonoscopies, the
risk–benefit ratio for aspirin, or the decision for prophylactic
colectomy.

In a clinical setting, assessing both rare monogenic risk variants
and polygenic risk requires high-coverage sequencing of genes
associated with monogenic risk and an approach to assay com-
mon variants across the genome. At present, this can be
accomplished by various approaches, including (i) high-coverage
whole genome sequencing33, (ii) whole exome sequencing and
genotyping array, or (iii) targeted high-coverage sequencing of
individual genes and low-coverage sequencing across the
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Fig. 3 Interplay of monogenic and polygenic risk for colorectal cancer. a Predicted odds ratio for colorectal cancer in each percentile (dots) of the
polygenic score distribution for carriers (blue) and noncarriers (black) of Lynch syndrome variants in the cohort study derived from the UK Biobank (n=
48,812). Noncarriers with median polygenic score served as the reference group. b Predicted probability of colorectal cancer by age 75 years in each
percentile (dots) of the polygenic score distribution for carriers (blue) and noncarriers (black) of Lynch syndrome variants in the cohort study derived from
the UK Biobank (n= 48,812). The shaded area around the dots represents the 95% confidence interval. The horizontal dashed lines show the probability of
disease for people with average polygenic risk score.
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genome34. Ongoing efforts to improve the cost and accessibility
of these technologies will improve the feasibility of incorporating
this information into routine clinical practice.

Our results should be interpreted in the context of potential
limitations. First, UK Biobank participants tend to be healthier
than the general population, and Color Genomics participants are
likely to be enriched for genetic disease compared to the general
population35. Within any target population, a comparison of
predicted and observed disease rates can allow for recalibration of
risk estimates, as recently performed for a breast cancer predic-
tion tool36. Second, our analysis focused on the role of monogenic
variants in the nine genes associated with the three CDC tier 1
genomic conditions; additional efforts are needed to include
variants in other known or newly discovered genes in the future.
Representative examples of such genes include those encoding
lipoprotein lipase (LPL), where variants increase risk of coronary
artery disease via perturbation of triglyceride metabolism, and
checkpoint kinase 2 (CHEK2), which increases risk of breast
cancer via perturbation of DNA repair pathways37,38. Third, we
aggregated together all pathogenic and likely pathogenic variants
for each monogenic condition across the known causal genes.
Although this approach is consistent with current clinical treat-
ment guidelines—which recommend similar treatment strategies
for each condition regardless of which gene is implicated—risk is
known to vary somewhat according to specific gene or variant
(Supplementary Figs. 2–4)39–41. Fourth, further efforts are needed
to understand how best to disclose integrated genomic risk
assessments to patients and treating clinicians and how to inte-
grate them with existing lifestyle or clinical risk factors42–44.

Finally, we continue to highlight an important equity issue.
Our knowledge concerning the monogenic risk variants and the
development of the polygenic scores has been based primarily on
patients of European ancestry, which affects the utility for
patients of other ancestries33,45,46. In particular, the polygenic
scores are known to be less precise for other ancestry groups46.
It is important for the biomedical community to invest in the
development of more diverse population allele frequency
databases47,48, disease association studies in other ancestral
backgrounds, new computational algorithms that better account
for ancestral background49, and new technology or machine-
learning algorithms to enable unbiased high-throughput func-
tional assessments of variants50,51.

Methods
Study populations. The study populations consisted of two case-control studies
and one national biobank cohort. First, a coronary artery disease case-control study
of 12,852 participants (6432 cases and 6420 controls) was derived from the UK
Biobank, a prospective national biobank study that enrolled middle-aged adult
participants between 2006 and 201018. Coronary artery disease cases were defined
centrally based on self-report at enrollment, hospitalization records, or death
registry records (http://Biobank.ndph.ox.ac.uk/showcase/showcase/docs/
alg_outcome_mi.pdf). Controls included participants free of any self-reported or
documented history of coronary artery disease. Only independent samples were
used by removing one from a pair of related individuals whenever genetic rela-
tionship was closer than second-degree.

Second, a breast cancer case-control study consisted of 19,264 women (1920
cases and 17,344 controls) who underwent clinical grade genetic testing for
hereditary breast and ovarian cancer syndrome at a commercial testing laboratory
(Color Genomics; Burlingame, CA). Breast cancer case ascertainment was based on
self-report at the time of enrollment20. Since participants derived from commercial
genetic testing companies tend to be enriched for relatedness, participants that
were related (up to second degree) and participants ascertained through
Color Genomics’ cascade screening program were not included in this study.

Third, a cohort derived from the UK Biobank consisting of 48,812 participants
that underwent exome sequencing at Regeneron Genetics Center was used19. There
was no overlap between this cohort and the 12,852 participants of the case-control
study. Extensive clinical data including diagnosis of coronary artery disease and
cancer are available on all participants. Coronary artery disease was defined based
on self-report of heart attack/myocardial infarction, hospitalization records
confirming a diagnosis of acute myocardial infarction or ischemic heart disease,

coronary revascularization procedures (coronary artery bypass graft surgery or
percutaneous angioplasty/stent placement), or death registry data indicating
ischemic heart disease or myocardial infarction as a cause of death. Breast and
colorectal cancer were each defined based on self-report of the diagnosis,
hospitalization records, cancer registry data specifying type of cancer, and death
registry. For each of the three diseases, we considered the earliest date at which the
diagnosis was ascertained as the diagnosis date. All participants diagnosed at dates
prior to enrollment in the UK Biobank were considered prevalent at baseline, while
participants diagnosed after enrollment were considered incident (Supplementary
Table 6). Additional details on ascertainment of each of the three disease states are
provided in Supplementary Table 11. Only independent samples were used by
removing one from a pair of related individuals whenever genetic relationship was
closer than second-degree.

Informed consent was obtained from all participants. Analysis of UK Biobank
data was performed under application number 7089 and approved by the Partners
Healthcare institutional review board. The commercial testing laboratory cohort
was approved by the Western Institutional Review Board (protocol number
20150716).

Gene sequencing. Whole exome sequencing on 12,909 samples from the coronary
artery disease case-control study derived from the UK Biobank was performed at
the Broad Institute of MIT and Harvard (Cambridge, MA) as described pre-
viously52. Libraries were constructed and sequenced on an Illumina HiSeq
sequencing using 151 bp pair-end reads53. An Illumina Nextera Exome Kit was
used for in-solution hybrid selection. Sequencing reads were aligned to the human
reference genome build GRCh37.p13 using the Burrows–Wheeler Aligner algo-
rithm54, and aligned non-duplicate reads were locally realigned and base quantiles
were recalibrated using the Genome Analysis Toolkit software55,56. Variants were
jointly called using the HaplotypeCaller module of the Genome Analysis Toolkit.
We removed samples with contamination >10% (n= 0), samples with <80% of
target bases at 20× coverage (n= 0), putative sex chromosome aneuploidy (n=
17), outliers for heterozygozity (n= 4), genotype call rate <95% (n= 6), and
samples for which there is no genotyping array data (n= 3). There were also 27
individuals excluded due to sample relatedness. Variants from the remaining
12,852 unrelated samples were carried forward for further analysis. The mean
target coverage was 75×, and 91.1% of target bases were captured at >20×
sequencing depth.

For the 19,264 samples from the breast cancer case-control cohort, target-
enrichment sequencing was performed at the laboratory of Color Genomics
(Burlingame, CA) as previously described20. The Color Genomics laboratory is in
compliance with Clinical Laboratory Improvement Amendments (number
05D2081492) and College of American Pathologists (number 8975161). In brief,
sequencing reads were aligned to the human reference genome build GRCh37.p12
using the Burrows–Wheeler Aligner algorithm, and duplicated and low-quality
reads were discarded. Variants were then jointly called using the HaplotypeCaller
module of GATK3.4 and SAMtools version 1.820. A no template control and two
positive controls containing a set of known variants were included in every batch of
samples. Strict coverage requirements (20 unique reads for each base) were used,
and median coverage ranged between 200× and 300×.

Finally, whole exome sequencing of 49,960 UK Biobank participants was
performed at the Regeneron Genetics Center using 75 base pair paired-end reads
with two 10 base pair index reads on the Illumina NovaSeq 6000 platform19, and
sequencing reads were aligned to the human reference genome build GRCh38
using the Burrows–Wheeler Aligner algorithm. Coverage exceeded 20× at 94.6% of
sites on average. Variant calls through two separate pipelines, an SPB pipeline that
used WeCall (GenomicsPLC) and GLnexus software and a functional equivalence
(FE) pipeline, were made available by the UK Biobank for 49,960 samples19,57,58.
We included variants from the FE pipeline that were also present in the SPB
pipeline. We excluded 222 samples for which there were no genotyping data
available (n= 51) or that failed additional sample quality control using genotyping
data: heterozygous missingness outlier (n= 112), putative sex chromosome
aneuploidy (n= 56), and discordance between reported and genetic sex (n= 20).
There were also 926 individuals excluded due to sample relatedness. The remaining
variants on 48,812 unrelated participants were carried forward for further analysis.
We converted PLINK-formatted files to VCFs and performed a liftover from
GRCh38 to GRCh37.p1359.

Variant quality control. In the 12,852 samples from the coronary artery disease
case-control cohort, the analysis was limited to the protein-coding regions and
canonical splice sites of three familial hypercholesterolemia genes (LDLR, APOB,
and PCSK9). We then filtered the observed variants to a candidate list of variants
that excludes synonymous variants or variants present at allele frequency of >0.005
in each racial subpopulation of the gnoMAD Genome Aggregation Database, a
publicly available population allele frequency database of 141,456 human exomes
and genomes47.

Variant quality control for the 19,264 samples from the breast cancer case-
control cohort limited the analysis to rare and high-quality variants in the protein-
coding regions and canonical splice sites of BRCA1 and BRCA2 genes20.

In the 48,812 participants form the UK Biobank cohort, the analysis was limited
to the protein-coding regions and canonical splice sites of nine genes for any of the
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three genomic conditions: familial hypercholesterolemia (LDLR, APOB, and
PCSK9), hereditary breast and ovarian cancer syndromes (BRCA1 and BRCA2),
and Lynch syndrome (MLH1, MSH2, MSH6, and PMS2). We filtered the observed
variants to a candidate list of variants that excludes synonymous variants or
variants present at allele frequency of >0.005 in any racial subpopulation of the
gnomAD Genome Aggregation Database47. We also performed additional variant
quality control filters to exclude variants that fall in low complexity regions,
variants that fall in regions with segmental duplications, or variants that did not
pass the threshold for the random forest algorithm of gnomAD47,60. No individual
with more than one pathogenic or likely pathogenic variant was identified in any of
the three study populations.

Variant classification. For the 12,852 coronary artery disease case-control study
and the 48,812 UK Biobank cohort, candidate variants were filtered to select
variants meeting clinical criteria of pathogenicity (pathogenic or likely pathogenic)
based on American College of Medical Genetics and Genomics (ACMG)/Asso-
ciation of Molecular Pathology (AMP) criteria23, by an American Board of
Genetics and Genomics (AMBGG)-certified clinical geneticist, blinded to the
phenotype of the participants, at the Partners HealthCare Laboratory of Molecular
Medicine (Boston, MA). In summary, the ACMG/AMP criteria for classifying
variant pathogenicity look at the effect of the variant on the gene, any previous
reports of pathogenicity of the variant, functional studies supporting the damaging
effect of the gene, and the prevalence of the variant in cases with the disease and
controls23.

Similarly, in the 19,264 breast cancer case-control study from Color Genomics,
variant classification was reviewed and signed out by an American Board of
Genetics and Genomics (AMBGG)-certified clinical geneticist following criteria for
pathogenicity for hereditary breast and ovarian cancer syndromes based on
ACMG/AMP criteria23.

For each of the three tier 1 genomic conditions, the association of monogenic
carrier status by gene with disease was calculated using a logistic regression model
with age, sex (except for breast cancer), and the first four principal components of
ancestry (Supplementary Figs. 2–4).

Polygenic score derivation and ancestry correction. We used three previously
validated polygenic scores for coronary artery disease, breast cancer and colorectal
cancer containing 6,630,150, 3820, and 95 variants, respectively7,21,22. Imputed
genotype array data available through the UK Biobank was used to calculate the
three polygenic scores in all the UK Biobank participants (n= 486,477) using the
PLINK2.0 score function52.

We included individuals of all ancestries and used a previously described
method to minimize variance in polygenic score distributions across genetic
ancestries. Briefly, we fit a linear regression model using the first four principal
components of ancestry to predict each of the three polygenic scores (PS ~ PC1+
PC2+ PC3+ PC4). We then used the residuals from these models as the ancestry-
corrected polygenic score and created reference distributions for each phenotype
based on the ancestry-corrected scores (Supplementary Fig. 5)33. We determined
the percentiles for each individual based on these reference distributions for each
disease separately.

The breast cancer and colorectal cancer polygenic scores were derived from
independent datasets21,22. The coronary artery disease polygenic score was derived
from the UK Biobank, but it had equal performance in the testing and validation
datasets which reassured the absence of model overfitting7.

In the breast cancer case-control study of 19,264 participants from Color
Genomics, low-coverage whole genome sequencing to a minimum depth of 0.2×
was performed and variants were imputed for calculation of the polygenic score34.
Ancestry-corrected polygenic scores were similarly calculated to minimize variance
in score distribution based on genetic ancestry: we fit a linear regression model that
uses the first four principal components of ancestry to predict an individual’s raw
polygenic score for breast cancer. We then used residuals from this model to create
an ancestry reference distribution for each individual (Supplementary Fig. 3).
Percentiles were defined based on the distribution of the residuals of the 19,264
participants.

We conducted two sensitivity analyses to test the hypothesis that the risk
gradient according to the coronary artery disease polygenic score operated via
pathways largely unrelated to cholesterol. First, we removed all variants from the
coronary artery disease polygenic score that are within 1 megabase of the three
familial hypercholesterolemia genes (LDLR, APOB, and PCSK9). A total of 14,669
variants were removed and the new score consisted of 6,615,481 variants. We then
obtained the odds ratio of disease per standard deviation of the modified score in
carriers and noncarriers of familial hypercholesterolemia variants, using a logistic
regression model adjusted for age, sex, and the first four principal components of
ancestry. Second, we sought to remove the impact of the polygenic score on LDL
cholesterol by using the residuals from a linear regression model that additionally
included a previously derived polygenic score for LDL cholesterol consisting of
2,013,592 variants (PSCAD ~ PSLDL+ PC1+ PC2+ PC3+ PC4)61. Similarly for
this residualized score, we calculated the odds ratio of coronary artery disease per
standard deviation in carriers and noncarriers of rare variants, using a logistic
regression model adjusted for age, sex, and the first four principal components of
ancestry.

Assessment of the linearity between polygenic score and disease risk. To
evaluate whether the relationships between polygenic scores and disease risk are
linearly associated in the 48,812 participants of the UK Biobank, we used two
approaches. First, we used a likelihood-ratio test to assess whether including
nonlinear terms can better explain the risk model by comparing a logistic
regression model with ancestry-corrected polygenic score as a single linear pre-
dictor (Model 1) to a polynomial model with additional higher degree of nonlinear
terms (square and cube) of ancestry-corrected polygenic score for each phenotype,
separately (Model 2) (Supplementary Table 8). Second, we checked model
goodness-of-fit by visualizing the predicted risk with the observed risk through the
Hosmer–Lemeshow method (Supplementary Fig. 1). We plotted the observed to
expected probability of prevalent disease in 20 groups of ancestry-corrected
polygenic score percentiles (5% each).

Statistical analysis. In the coronary artery disease and breast cancer case-control
studies, participants were stratified into three groups according to their polygenic
score—low, intermediate, or high defined as the lowest quintile, the middle three
quintiles, and the highest quintile of the polygenic score distribution, respectively,
as we and others have performed previously62–64. For carriers and noncarriers in
each polygenic score group (coded as an indicator variable with six levels, 2 carrier
status × 3 polygenic score groups), the odds ratio for disease was calculated in a
logistic regression model with age, sex, and the first four principal components of
ancestry as covariates. In the case of breast cancer, only females were included and
sex was not a covariate. Non-carriers with intermediate polygenic scores served as
the reference group.

The data from the coronary artery disease and breast cancer case-control
studies suggested roughly additive effects between monogenic risk variants and
polygenic risk, consistent with prior reports9,11. Formal tests of interaction were
performed by including an interaction term—polygenic score × monogenic
mutation carrier status—within logistic regressions models. These results should be
interpreted within the context of limited statistical power to detect non-additive
interaction given the number of individuals carrying monogenic risk variants. To
assess this power, we performed a post hoc power calculation using the R package
waffect65. Within this framework, we fixed the study size and effect size of the
polygenic score in noncarriers to the observed values, and subsequently simulated
variable polygenic score effect size in the monogenic variant carriers. For coronary
artery disease, given an observed odds ratio per standard deviation increase in the
polygenic score in noncarriers of 1.74, we had 80% power to detect a different effect
size in carriers if the odds ratio was <0.71 or >5.79 at an alpha of 0.05. In this study,
the observed odds ratio per standard deviation of polygenic core in monogenic
variant carriers was 2.31, corresponding to a p-value for interaction of 0.60 (Wald
Test). For breast cancer, given an observed odds per standard deviation increase in
the polygenic score in noncarriers of 1.57, we had 80% power to detect a different
effect size in carriers if the odds ratio was <1.25 or >2.01. In this study, the observed
odds ratio per standard deviation of polygenic core in monogenic variant carriers
was 1.44, corresponding to a p-value for interaction of 0.94 (Wald Test). Within the
cohort of 48,812 UK Biobank participants, the p-values for interaction were
similarly non-significant—0.07, 0.53, and 0.49 (Wald Test) for coronary artery
disease, breast cancer, and colorectal cancer, respectively.

Within the cohort of 48,812 UK Biobank participants, to estimate the odds ratio
of disease by monogenic variant status and polygenic score percentile for each of
the three diseases, we calculated the odds ratio of prevalent disease using a logistic
regression model with enrollment age, sex, and the first four principal components
of ancestry as covariates—except for breast cancer analyses, which were restricted
to females. The predicted odds ratios were then calculated by referencing the risk of
noncarriers with median polygenic score and conditioning on the mean value of
each other covariate.

A second analysis estimated the probability of disease by age 75 years as a
function of monogenic variant carrier status and polygenic score. We fit a Cox
proportional hazards model with age as the time-scale, defining the time-to-event
as the age at which the diagnosis was first ascertained in cases and the age at the
most recent follow-up in controls66,67. These models included carrier status,
polygenic score, sex, and the first four principal components of ancestry as
covariates—except for breast cancer analyses, which were restricted to females. To
estimate the probability of disease, we used the monogenic and polygenic effects
from the model and standardized the remaining covariates at their mean. The
probability of disease by time t was estimated by F(t)= 1−S(t), where S(t) is the
survivor function, estimated by the survfit function from the R survival package.

Statistical analyses were performed using R software, version 3.5 (R Project for
Statistical Computing). Statistical significance was set at p < 0.05, and two-sided
p values were used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Phenotypes derived as part of this manuscript—including calculated polygenic scores,
monogenic variant carrier status, and disease status endpoints—will be returned to the
UK Biobank for dissemination to approved investigators. Further information on
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obtaining approval for access to the UK Biobank data is available at: https://www.
ukbiobank.ac.uk/researchers. We also included Supplementary Table 11 with the
codings of all phenotypes so that they can be replicated by other investigators from raw
phenotypes in the UK Biobank. Criteria used to support pathogenicity assessment for
monogenic risk variants are provided in Supplementary Tables 1 and 5. The raw
weights for calculating the coronary artery disease polygenic score are available for
download from the Broad Institute Cardiovascular Disease Knowledge Portal (http://
www.broadcvdi.org). The raw weights for calculating the breast cancer and colorectal
cancer polygenic scores are available from the original publications21,22. Aggregate
summaries of the Color Genomic data are available at: https://data.color.com. The
Genome Aggregation Database (gnoMAD) is publicly available at: http://gnomad.
broadinstitute.org.
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